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1  |  INTRODUC TION

The smallest extracellular vesicles, exosomes, range in size from 30 
to 150 nm and are found in the majority of bodily fluids.1 They trans-
port signaling molecules that drive a number of biological processes, 
including cell signaling, immunological responses, tumor metastasis, 
and other cellular activities. Exosomes have now been shown in 
several investigations to play both diagnostic and therapeutic func-
tions, in which their precise detection, separation, and quantification 
are crucial. Today, exosomes are one of the most highly researched 
topics in regenerative medicine with over 5000 publications being 
published on the topic yearly (Figure 1). This comprehensive review 
aims to discuss their biogenesis as well as their standard isolation 
techniques, including ultracentrifugation, microfluidic, immunoaf-
finity, precipitation, size-exclusion chromatography, ultrafiltration 
technologies. The fundamentals of each isolation technique are 
detailed in length, along with their respective benefits and draw-
backs. Furthermore, the quantification of exosomes by microfluidic 
devices, dynamic light scattering, electron microscopy, adjustable 
resistive pulse sensing, and flow cytometry are explained.

1.1  |  What are exosomes?

Exosomes are intriguing extracellular vesicles in industry and bio-
medical research as possible disease biomarkers and therapeutic 
agents since they share components with their parent cells. Ex-
osomes reflect the biophysical features of mesenchymal stem cells 
(MSCs), yet many therapeutic studies have demonstrated that they 
are considered more effective than MSCs themselves for a number 
of reasons. Notably, exosomes bypass important immune responses 

and are considered exponentially safer than MSCs will ever be. Their 
use has therefore been investigated in many university-based clin-
ics along with private clinical practice despite lacking FDA and CE 
clearance. Crucial to their success in clinical practice remains in their 
ability to be manufactured under standardized Good Manufacturing 
Practices (GMP). Sensing technologies are now being used to char-
acterize exosomes from the central nervous system (CNS), which 
have the ability to penetrate the blood–brain barrier.2 These ex-
osomes are being used in the early diagnosis of neurodegenerative 
illnesses and as a means to track disease development.3

Over 50 years ago, “platelet dust” was the term used to char-
acterize extracellular vesicles (EVs).4 The field more specific to the 
smallest EVs, exosomes, was further termed in 1983, with two re-
search groups having been given credit for their discovery. In these 
studies, labeled transferrin receptors (TfRs) were followed as they 
moved from the plasma membrane into developing reticulocytes. 
Transferrin receptors are internalized and repackaged into very small 
(50 nm) vesicles once they reach their destination cells.5,6 In con-
trast to previous assumptions, the authors found that vesicles were 
secreted out of maturing blood reticulocytes into the extracellular 
space, where they were later dubbed exosomes due to their vesicu-
lar exit from the cell.7,8

1.2  |  Historical findings of exosomes

In the early 1980s, Trams et al. described exosomes as nanosized 
vesicles released during reticulocyte maturation.9 The presence 
of transferrin bound to the exosome surface was later discov-
ered and verified by Johnstone et al.10 As a result, the concept of 
exosomes as a kind of excretory signal used by many cell types to 
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load RNA, proteins, lipids, etc., for intercellular transit gained trac-
tion.11 In terms of their structure, EVs are characterized by a lipid 
bilayer that encloses a minimal amount of cytoplasm. The aqueous 
core of the lipid bilayer plays a role in the transfer of cargo.12,13 In 
more recent years, the complexity of exosomal functions has been 
explored, and these vesicles have been found to have various roles 
in disease progression, immune responses, cell functions, and tissue 
regeneration.14

2  |  BIOGENESIS OF E XOSOMES

Eukaryotic cells generate exosomes in their endosomes.15 It is chal-
lenging to identify exosomes in a manner that separates them from 
other EVs, such as microvesicles and apoptotic bodies, because of 
the variety among exosomes and their overlap in features with dif-
ferent EVs.16 EVs are biological nanoparticles encased in lipids that 
are secreted by almost every living cell. The role of EVs in many 
pathological and physiological intercellular signaling processes was 
not previously recognized but is now universally accepted as es-
sential.17,18 It is now generally accepted that EVs provide a physi-
ologically relevant setting for the targeted delivery of a variety of 
biological substances to distinct cellular and tissue niches. Because 
of this, they have drawn much attention as having the potential for 
use in next-generation drug delivery methods.

The endosomal system is the site of exosome production. After 
developing into late endosomes or multivesicular bodies (MVBs), the 
endosomal membrane gives rise to intraluminal vesicles (ILVs; some-
times called exosomes) in the organelle's lumen (Figure 2).19 The re-
lease of exosomes into the extracellular environment occurs during 
MVB fusion with the plasma membrane.20 EVs come in three main 
sizes: exosomes (30–150 nm), microvesicles (MVs) or ectosomes 
(50–1000 nm), and apoptotic bodies (500-2000 nm) (Table 1). Exo-
somes are secreted with the formation of endocytic vesicles, which 
bud inward. These sacs will consist of extracellular fluid inside and 

a cell membrane outside.5 In recent years, exosomes have garnered 
much interest in drug delivery since they can be utilized to target 
specific organs based on their surface receptors, which has led to 
considerable improvements in therapeutic medicine.21,22 Typically, 
exosomes have important proteomic and genetic information that 
plays a key role in transporting cargo toward the targeted tissue/
organ. Based on these discoveries, exosomes have been isolated 
and further reused for therapeutic medical applications with great 
success. Exosomes reach target tissues via three primary means. 
Exosomes activate target cells by attaching to particular ligands 
present on their receptors, a process known as L-R binding (L-ligand, 
R-receptor). Using the budding process, exosomes may also transfer 
cell surface receptors to the recipient cell. Finally, membrane fusion 
permits the horizontal transfer of the donor cell's cytosolic contents 
to the recipient cell.23

Therefore, a thorough understanding of exosome biogenesis 
pathways is important for the development of associated treat-
ment approaches. Activation of a growth factor receptor on the cell 
membrane is the first step in the exocytosis process by which cells 
actively produce exosomes. After being stimulated, this receptor ac-
tivates its target protein, and the ligand–receptor complex is inter-
nalized by endocytosis. There are typically three phases involved in 
the production of exosomes.

1. The endocytic cell wall contributes to the production of en-
docytic vesicles.

2. The formation of an early endosome involves inward budding 
of the membrane of an endosomal vesicle, which results in the for-
mation of multivesicular bodies (MVBs) and proteins such as clath-
rin.24,25 Intraluminal vesicles (ILVs) are larger vesicles that, after 
maturation, transform into late exosomes.

3. Exosomes are the vesicular contents discharged into the extra-
cellular environment when MVBs fuse with the cell membrane.26,27 
The production of exosomes by vesiculation is a relatively uncharted 
area of study. Released exosomes are taken up by cells in a targeted 
manner determined by the proteins they express on their surface.28 

F I G U R E  1  Number of publications on 
exosomes over the past 10 years (data 
from PubMed).
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    |  233MIRON and ZHANG

In particular, the presence of tetraspanin–integrin protein complexes 
on the exosomal surface adds to the selectivity by which exosomes 
target cells.29 Increased expression of proinflammatory receptors 
on cell surfaces promotes the selective absorption of exosomes by 
target cells.30

3  |  STRUC TURE AND COMPOSITION OF 
E XOSOMES

Exosomes are so small that they can only be seen under an elec-
tron microscope, making them invisible to the human eye and light 
microscopes. Because of the extensive dehydration procedures re-
quired for electron microscopy processing, the exosomes appear as 

flattened spheres.31,32 Recent structural investigations of exosomes 
have shown the presence of certain lipids that keep them biologi-
cally active.

The macromolecular components of exosomes include proteins, 
lipids, messenger RNAs (mRNAs), and microRNAs. These exosomes 
are created by their parent cells,26 and investigators have now iden-
tified over 8000 proteins and 194 lipids that have been found within 
exosomes.33

Exosomes released from cells including immature dendritic cells, 
intestinal epithelial cells, B lymphocytes, and others, contain both 
ubiquitous and cell-specific proteins.34 Rab proteins (Ras superfam-
ily of monomeric G proteins) and other ubiquitous proteins found 
on exosomes aid in their fusion with the membranes of other cells 
and binding with target proteins.35 Exosomes also include a variety 

F I G U R E  2  Biogenesis pathways 
and biochemical compositions of (A) 
exosomes, (B) microvesicles, and (C) 
apoptotic bodies. (A) Proteins, lipids, and 
genetic material are loaded into ILVs, 
which are eventually released from the 
parent cell as exosomes. (B) Microvesicles 
are formed by direct budding off of 
the plasma membrane and contain 
proteins, lipids, and genetic materials. 
(C) Apoptotic bodies bud directly from the 
plasma membrane during apoptosis and 
consequently contain higher amounts of 
disintegrated organelle content. Reprinted 
with permission from Lai et al.337

TA B L E  1  Comparison between extracellular vesicles.

Types Apoptotic bodies Microvesicles Exosomes

Origin Plasma membrane Plasma membrane Endocytic pathway

Sizea 500–2000 nm 50–1000 nm 30–150 nm

Function Facilitate phagocytosis Intercellular communication Intercellular communication

Markers Annexin V, phosphatidylserine Integrins, selectins, CD40 Alix, Tsg101, tetraspanins (CD81, CD63, 
CD9), flotillin

Contents Nuclear fractions, cell organelles Proteins and nucleic acids (mRNA, miRNA, 
and other noncoding RNAs)

Proteins and nucleic acids (mRNA, 
miRNA, and other noncoding RNAs)

a Extracellular vesicles are typically defined based on their size.

 16000757, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/prd.12520 by R

oyal D
anish L

ibrary, W
iley O

nline L
ibrary on [14/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



234  |    MIRON and ZHANG

of other proteins, including annexins I, II, V, and VI, which all play 
important roles in cell dynamics and membrane fusion.36,37 Cyto-
skeletal proteins, GTPases (albumin, moesin, synenin, and actin), tet-
raspanins (CD82, CD8, CD63, and CD9), heat shock proteins (Hsc90 
and Hsc73), apoptosis proteins, and adhesion molecules38 are also 
found in exosomes from different sources.39 Integrins are found on 
the surface of exosomes and play a crucial role in exosome fusion 
with particular target cells.40 Furthermore, these proteins serve as 
the information payload when exosomes are shuttled between cells.

In addition to proteins, exosomes contain an abundance of lip-
ids. Exosomes consist of a lipid bilayer composed of sphingolipids 
(ceramide and sphingomyelin),41 phospholipids (phosphatidylserine, 
phosphatidyl ethanolamine, and phosphatidyl choline),42 phospha-
tidylinositol and mono-sialo-tetra-hexosylganglioside (GM3).43 In 
comparison to the original cell from which they were isolated, exo-
somes have a lipid content that is approximately four times higher. 
Phosphatidylserine, in the form of different phospholipid trans-
porter enzymes, is expressed on the plasma membrane of exosomes, 
whereas sphingomyelin and GM3 are primarily responsible for exo-
some membrane stiffness.44,45 Lipids of this kind also play a role in 
the binding of the outer proteins, which is necessary for exosomes 
to send signals and fuse with the plasma membrane.46 Exosomes in-
clude bioactive lipids, such as prostaglandin and leukotriene, as well 
as activated enzymes involved in lipid metabolism.47 Nucleotides 
are also found in noncoding RNAs, microRNAs (miRNAs), and mes-
senger RNAs (mRNAs).33 The strength and stiffness of the exosome 
membrane, which make it less vulnerable to breakdown outside the 
cell and more durable as a carrier, may be due to the high quantities 
of sphingomyelins and unsaturated lipids in the membrane.48 Thus, 
exosomes offer better stability in the human body than the signaling 
molecules currently used for delivery, such as recombinant human 
proteins. Many studies have investigated the 8000+ different pro-
teins and lipids contained within exosomes, including their various 
ratios, and have been identifying how various combinations can be 
utilized for therapeutic breakthroughs.

3.1  |  Molecular composition of exosomes

Modulation of the protein cargo in released exosomes may be af-
fected by factors such as the microenvironment's mechanical char-
acteristics, biochemical impulses, and topography, in addition to the 
cell type of origin.49 Media composition, mechanical stress, disease 
type, and oxygen levels are just a few of the environmental elements 
that might affect exosome secretion and composition.50

3.2  |  Protein markers in exosomes

Typically, there are fewer than a hundred proteins in a single EV.33 
The number of EVs needed to produce 1 μg of total protein is ap-
proximately ≈109–1010.51,52 EVs of the same type have widely vary-
ing protein cargos,53 but some proteins are ubiquitous in these 

EVs owing to their functions in EV synthesis and protein sorting.54 
Thus, proteins can serve as indicators in clinical diagnostics and EV 
characterization, allowing for the differentiation of apoptotic bod-
ies, microvesicles, and exosomes.55 Common tetraspanin proteins 
on exosome membranes include CD8, CD63, and CD9; these pro-
teins are involved in protein trafficking, signaling, and membrane 
fusion.56,57 Exosome biogenesis is a multistep process that also 
involves TSG101, flotillin, and ALIX.58 The ESCRT protein complex 
and related proteins Hrs, flotillin, TSG101, and ALIX are all found in 
exosomes and play important roles in MVB formation and ILV en-
gulfment. The binding of MVBs to the plasma membrane and the 
modulation of exosome secretion are mediated by the vesicle fusion 
and transport proteins annexin and Rab27a.59,60 Exosomes also con-
tain abundant heat shock proteins (Hsp70 and Hsp90) and cytoskel-
etal proteins (actin and myosin).22,61 These proteins may be utilized 
to identify and isolate exosomes because they act as markers that 
distinguish them from other extracellular vesicles.

3.3  |  DNA and RNA in exosomes

The nucleic acids in EVs are transcribed and translated and ultimately 
affect the behavior of the cells to which they are delivered.58,62 The 
restoration of metabolic function in breast cancer cells that had been 
reduced by hormone treatment may be attributable to mitochondrial 
DNA transported by exosomes.63 EVs have a role in both healthy 
and diseased cell–cell interactions, and they often carry miRNA and 
mRNA.13 Viruses may be found in the RNA of exosomes released 
from infected cells, and the miRNA profiles in exosomes released 
from malignant cancer cells differ from those of normal cells.64 The 
potential of using these RNAs as early illness indicators is the subject 
of intensive research for the early diagnosis of cancer.

Since EV subtypes vary in their nucleic acid composition,65 it is 
challenging to create a genetic profile for each EV subtype. Never-
theless, there are a few consistent differences in nucleic acid com-
position among EV subtypes. Exosomes and microvesicles contain 
an abundance of miRNA and mRNA,66 whereas apoptotic bodies in-
clude an abundance of ribosomal RNA (rRNA).67 Complete genomes 
can be found in microvesicles and exosomes68,69; however, in apop-
totic bodies, DNA is in pieces.70 Up to ≈500 unique miRNA mole-
cules have been found in a single exosome.71 The composition and 
genetic profiles of exosome nucleic acids, as well as how they vary 
from other EVs, are still not well understood.72,73 To enhance and 
standardize the separation of exosomes from other EVs, it is neces-
sary to conduct a large-scale comparison of EVs to find variations in 
nucleic acid content.

3.4  |  Lipids in exosomes

Unlike their protein and nucleic acid contents, the lipid composi-
tion of EVs is not as well known. Mass spectrometry has uncov-
ered hundreds of different lipid molecules in EV membranes.74 In 
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platelet-derived exosomes, the most common lipids are sphingomy-
elin (12.5%), phosphatidylcholine (15.9%), and cholesterol (42.5% of 
lipids) and their derivatives.42,75 The lipid compositions of exosomes 
diverge significantly from those of their parent cells,42,76 yet only 
marginally so among exosomes from the same cell line.42 Exosomes 
are efficient transporters of proteins and nucleic acids because their 
plasma membranes are more solid and resistant to degradation than 
their parent cells. This may be due to the increased amounts of cho-
lesterol, desaturated lipids, and sphingomyelin in exosome plasma 
membranes.77 There are different amounts of lipids on both the 
outer and inner leaflets of the exosome membrane. This helps the 
exosome remain stable.78 Microvesicles, in contrast to exosomes, 
contain lipids that are identical to those of their parent cells. Ad-
ditionally, apoptotic bodies contain more phosphatidylserine than 
their parent cells.79

Lipids in EVs have a regulatory role as well.66 The “eat me” signal 
sent out by phosphatidylserine in the outer membrane of apoptotic 
entities is a well-known example.80,81 Another way lipids may affect 
inflammation is via their anti-inflammatory effect of the ceramide 
phosphates in exosome membranes as exemplified after second-
hand smoke exposure in bronchoalveolar lavage fluid.82 Lipids are 
crucial to the activity of EVs, and a thorough examination of EV lip-
ids may reveal new physicochemical features that may be used to 
distinguish exosomes from other EV subtypes.

3.5  |  Surface proteins of exosomes

Antigen presentation on the surfaces of exosomes may regulate 
immunological responses, making them an important factor in im-
mune system activation and suppression.83 During the onset and 
development of inflammation, for instance, exosome membranes 
fuse with MHC-antigen complexes to trigger antigen-specific T-cell 
responses.84 Lymphocyte function-associated antigen 1 (LFA-1) and 
CD86 are surface receptors on exosomes that signal inflammatory 
pathways that activate immune cells.85 Cancer cells that carry the 
inhibitory checkpoint molecule programmed death-ligand 1 (PDL1) 
on their surface produce exosomes that reduce the activity of cy-
totoxic T cells86 and aid cancer cells in evading the immune system. 
Exosomes have been shown to transport protein, DNA, and RNA 
cargoes that may trigger/resolve immunological responses87 and 
other physiological processes, in addition to surface proteins.

4  |  DELIVERY OF E XOSOME C ARGO 
FROM PARENT TO TARGET CELL S

One recently discovered mode of cell-to-cell communication in-
volves exosomes transporting lipids, nucleic acids, and proteins from 
parent to daughter cells.57,88 The exosomal payload, particularly nu-
cleic acids, may control the receiving cell's behavior.62,89 As an alter-
native to MSCs, the miRNA payload of exosomes formed from MSCs 

may aid in the healing of damaged myocardium.90 Due to changes in 
miRNA content between exosomes and parental cells, MSC-derived 
exosomes have demonstrated a higher capacity to avoid hypertro-
phy than MSCs themselves.91–93 Several advantages of exosomes 
have been identified over their stem cell counterparts and discussed 
later in this article. To modify systemic immunological responses, for 
example, intercellular communication occurs across long distances 
thanks to the exosomal transport of hormones, growth factors, and 
soluble cytokines.94–96 The lipid payload of exosomes seems to have 
several roles, including modulating the recipient cells' metabolism 
and immunological response.97,98

5  |  CELLUL AR SOURCES OF E XOSOMES

Multiple cell types and diverse regulatory mechanisms contribute 
to exosome production and secretion. Large variations in treat-
ment results have been recorded, and these differences have been 
linked to the quantity and features of exosomes, including their 
origin.99–101 Therefore, rigorous selection of the appropriate cell 
source of exosomes is crucial for enhancing the yield and quality 
of exosomes. Furthermore, as no single growth factor is optimal for 
every single regenerative procedure, no single source of exosomes 
can be used to treat every disease/disorder. Therefore, research 
continues to evolve more into precision medicine and discovering 
which exosomes are best suited for which tissue is of paramount 
importance.

Most exosomes come from MSCs, which have been well de-
scribed by the International Society for Cell and Gene Therapy.102 
Menstrual blood, tooth pulp, skin, umbilical cord, adipose tissue, 
and bone marrow are also potential sources for MSCs.101,103 Most 
research has focused on bone marrow mesenchymal stem cells 
(BMSCs), adipose-derived mesenchymal stem cells (ADSCs), and 
human umbilical cord-derived mesenchymal stem cells (HUMSCs). 
As previously established, exosomes generated from each of these 
stem cell sources may have radically diverse clinical results depend-
ing on their contents.101,103–105 Ongoing research aims to acquire 
relative data on exosomes from various cell sources, including urine-
derived stem cells106 and dental pulp stem cells,107 is pivotal toward 
long-term regenerative therapies of multiple tissue types. Overall, 
exosomes have been shown to play large roles with the cross-talk 
of many cell types and have been shown to be implicated in immu-
nity, antimicrobial activity, regeneration of various tissues, while also 
possessing anti-apoptotic, anti-oxidative stress, and anti-tumor ac-
tivity (Figure 3).

5.1  |  Bone marrow MSC-derived exosomes

Exosomes generated from MSCs in bone marrow (BM) have been 
examined extensively for their potential to cure a broad range 
of diseases and disorders. Exosomes generated from human 
BMSCs have been shown to diminish liver fibrosis by increasing 
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hepatocyte regeneration and inhibiting inflammatory processes 
(as seen by a substantial drop in the expression levels of inflamma-
tory cytokines).108 Exosomes generated from BMSCs were shown 
to promote liver regeneration in vivo in another investigation.109 
Multiple studies have also validated the therapeutic potential of 
BMSC-derived exosomes in various cardiovascular conditions, in-
cluding ischemic and reperfusion diseases and myocardial dam-
age, and can also protect against myocardial hypertrophy and 
apoptosis.110–112

An array of other studies have further demonstrated the pos-
itive outcomes of BMSC-derived exosomes on the recovery pro-
cess after stroke or/and traumatic brain injury113,114 as well as 
degenerative diseases such as Alzheimer's disease.115 One com-
mon feature of BMSC-derived exosomes is their capability to 
mediate various anti-inflammatory processes.116 These exosomes 
have further been tested for rheumatoid arthritis treatment.117 
Bone regeneration experiments using exosomes isolated from 
BMSCs have also been conducted demonstrating their osteoin-
ductive potential.118–121

5.2  |  Umbilical cord MSC-derived exosomes

Umbilical cord (UC) MSC-derived exosomes have been utilized 
and have demonstrated extensive potential in regenerative medi-
cine. UC MSC-derived exosomes have been used to treat liver 

fibrosis122–124 and kidney injury.125,126 Likewise, fracture heal-
ing has been improved using locally applied UC MSC-derived 
exosomes.127–129 Exosomes generated from UC MSCs have also 
been found to have beneficial effects in the treatment of gastroin-
testinal disorders.130–132

5.3  |  Adipose MSC-derived exosomes

Adipose (AD) MSC-derived exosomes are popular choices since they 
can be isolated relatively easily when compared to exosomes from 
other sources. They have a wide variety of therapeutic applications 
and may speed up the recovery time of damaged tissues. In a por-
cine model of metabolic syndrome and renal artery stenosis, a single 
intrarenal delivery of pig AD MSC-derived exosomes reduced renal 
inflammation, increased the number of reparative macrophages, and 
upregulated the expression of the anti-inflammatory cytokine IL-10. 
In addition, exosomes generated from AD MSCs reduced the lev-
els of IL-6, IL-1β, and TNF-α in the renal vein.133 As a result, these 
exosomes reduced renal fibrosis and enhanced the functioning of 
stenotic kidneys.133

AD MSC-derived exosomes also provided cardioprotection in 
numerous studies. In a rat model of acute ischemia/reperfusion, 
they were shown to prevent myocardial necrosis and apoptosis.134 
AD MSC-derived exosomes also had a protective influence on car-
diomyocytes under oxidative stress in vitro.135

F I G U R E  3  Mesenchymal stem cells (MSCs) in the context of a galaxy of intercellular signals. Mesenchymal stem cells participate in 
different physiological processes through secreted factors (secretome) or by cell-to-cell contact. Reprinted with permission from Fernandez-
Francos et al.301
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Exosomes generated from AD MSCs have shown significant 
promise as a therapeutic for Alzheimer's disease.136 These authors 
discovered that exosomes generated from AD MSCs display par-
ticular enzyme activity for neprilysin (the most critical enzyme that 
breaks amyloid beta peptide in the brain).136

5.4  |  Roles of immune-cell-derived exosomes 
in diseases

In both the development and treatment of illnesses, immune cells 
are pivotal players. Exosomes from various cell types carry a wide 
variety of cargoes to their recipient cells, which might affect their 
behavior and function. Due to their involvement in many cells' ability 
to induce inflammatory reactions in response to infection, exosomes 
have been implicated in a wide range of inflammatory illnesses, in-
cluding tissue damage, autoimmunity, and allergies. Exosomes may 
also play a role in improving the regenerative and reparative pro-
cesses of many diseases.

5.5  |  Immune cell-derived exosomes

The activation of other immune cells, inhibition of immunological 
responses, and participation in the licensing phenomena of antigen-
presenting cells are just a few of the many roles that immune cell-
derived exosomes (IEXs) may play in the immune system.137 Below, 
significant research on each kind of immune cell is examined individ-
ually to better understand the properties of the exosomes involved 
in these processes.

5.6  |  Dendritic cell-derived exosomes

Depending on the kind of activation and presence of cytokines, den-
dritic cells (DCs) release exosomes with varying characteristics. Dur-
ing an inflammatory response, activated DCs release exosomes that 
stimulate the innate immune system.138 In addition, exosomes may 
directly and indirectly stimulate T-cell antigen detection.139 There is 
an increase in the number of MHCII peptide complexes on the sur-
face of DCs, which may then activate T cells because of the transfer 
of antigenic peptides from active to inactivated DCs through DC-
specific exosomes.140,141

5.7  |  Macrophage-derived exosomes

Mass spectrometry analyses have demonstrated that over 5'100 
different proteins can exist within macrophage-derived exosomes. 
Furthermore, their protein content changes after activation and/or 
polarization. Macrophages are extremely plastic cells with the ability 
to polarize toward either the M1 (tissue inflammation) or M2 (tissue 

resolution/regeneration) phenotype. During these events, they re-
lease various exosomes that have the potential to act on other cell 
types.142–146 Therefore, M2 macrophage-derived exosomes may 
have a role in controlling tumor cell angiogenesis, invasion, prolif-
eration, and migration.147–150 These IEXs are expected to have great 
potential for future use in regenerative medicine since the immune 
system is highly involved in many diseases.

5.8  |  Neutrophil-derived exosomes

Neutrophil exosomes, which vary in composition depending on 
their activation status, have been analyzed using mass spectrom-
etry, and 271 distinct proteins have been found.151 Since neutro-
phils are among the first cells to arrive at the site of inflammation, 
the exosomes they secrete interact with other cell types and play 
a crucial role in innate immunity.152 Neutrophil-derived exosomes, 
for instance, may change the proliferative characteristics of airway 
smooth muscle cells and thus contribute to the development of 
asthma.151,153

5.9  |  Mast cell-derived exosomes

Depending on the context, exosomes released by mast cells trans-
port exogenous antigens bound to heat shock proteins 60 and 70 
(HSP-60 and HSC-70). Exosomes released by mast cells are capable 
of activating B and T lymphocytes in vivo and in vitro. In addition 
to their other functions, they may augment DC maturation, making 
the antigen presentation of DCs more efficient.154–157 Mast cell ex-
osomes are an intriguing, but further study is needed.

5.10  |  Eosinophil-derived exosomes

Exosomes produced by eosinophils exert autocrine effects. The 
stimulation of nitric oxide (NO) and reactive oxygen species (ROS) 
generation are among the roles of Eosinophil-derived exosome 
(EOX).158 These mediators are less beneficial and relevant than ther-
apeutic exosomes because they promote inflammation by increasing 
POSTN, CCL26, and TNF-α gene expression.159

5.11  |  B lymphocyte-derived exosomes

Similarly, activated B cells secrete more exosomes than their inac-
tive counterparts, whether via B-cell receptor (BCR) or TLR acti-
vation.160 These exosomes transport the MHCII peptide complex, 
which, when bound to T cells, may activate them. Because of the 
presence of α4β1 integrins that connect with VCAM-1 on the sur-
face of follicular dendritic cells (FDCs), these exosomes may also 
bind to FDCs.161 Further studies are required to fully understand the 
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238  |    MIRON and ZHANG

scope of potential exosomes secreted by B lymphocytes in the repair 
and regeneration processes.

5.12  |  T lymphocyte-derived exosomes

Exosomes released by naive T lymphocytes affect the functions 
of immune cells due to their expression of the particular TCR and 
other adhesion molecules.162 Exosomes expressing markers such 
as CD73, CTLA-4, and CD25, all of which inhibit the immune sys-
tem in different ways, are produced and secreted in large quan-
tities by regulatory T cells (Tregs). The exosomal surface protein 
CD73 induces adenosine synthesis, which dampens the immu-
nological response (anti-inflammatory response).163 Similar to B 
lymphocytes, much remains unknown regarding T lymphocyte-
derived exosomes. Further study is required to determine how 
these exosomes impact the functions of other immunological and 
nonimmune cells.

5.13  |  Roles of immune-related exosomes on the 
prevention of inflammatory responses

IEXs have been used therapeutically due to their potential to 
modulate immunological responses. Diseases including diabetes, 
human systemic lupus, and some cancers are linked to an imbal-
ance in Treg/Th17 cells. However, proteins and messenger RNAs 
(mRNAs) in M2 macrophage exosomes have been shown to have 
beneficial effects. Zhou et al. found that miR-29a-3p and miR-
21-5p are transferred to TCD4+ cells through exosomes from 
M2 macrophages via a synergistic method. By promoting the de-
velopment of naive cells into Tregs by blocking the transcription 
factor STAT3, these exosomes disturb the equilibrium between 
Tregs and Th17 cells. Anti-inflammatory cytokines such as IL10 
are produced in greater quantities, whereas the output of proin-
flammatory cytokines such as IL4, IL6, and TNF-a is dramatically 
reduced. Because they promote the development of TCD4+ cells 
into Tregs, M2-derived exosomes not only stop inflammation but 
also dampen T-cell anti-tumor responses.164 Notably, the signal-
ing cargo/content of exosomes released by various immune sys-
tem cells elicits widely varying responses in target cells.

5.14  |  Therapeutic application of IEXs in 
autoimmune diseases

Damage to normal tissue functions caused by aberrant immune sys-
tem responses is the hallmark of autoimmune disorders, which may 
have a devastating impact on a person's quality of life. Due to the 
growing number of autoimmune-related conditions, exosomes have 
been evaluated for their ability to modulate immune responses. Ex-
osomes are now widely used and researched for a variety of autoim-
mune conditions, including myasthenia gravis, inflammatory bowel 

disease (IBD), rheumatoid arthritis, and multiple sclerosis (MS). 
Immune-derived exosomes have been useful for improvements in 
MS,165–167 IBD,168,169 RA,170–172 asthma and allergies,173–175 and even 
transplant rejection.176,177

5.15  |  Astrocyte-derived extracellular vesicles

The central nervous system (CNS) is home to a unique popula-
tion of glial cells called astrocytes.178 Inflammation of the nervous 
system is a recognized pathogenic characteristic in a wide variety 
of illnesses and disorders; this is known as reactive astrogliosis in 
the setting of injury. To keep the CNS running smoothly, astro-
cytes undertake homeostatic roles, including regulating neuronal 
metabolism and activity,179,180 and maintaining the glia limitans 
and the blood–brain barrier (BBB).181–183 Numerous studies have 
highlighted astrocyte-derived extracellular vesicles (ADEVs) as a 
key component of the impact of astrocytes on neighboring tissue. 
Under both normal and pathological conditions, astrocytes release 
a variety of substances.

The most significant findings on exosomes derived from various 
cell sources are summarized in Table 2.

6  |  METHODS TO ISOL ATE AND CULTURE  
E XOSOMES

Changes in the components of the culture medium, environmental 
conditions, or cultivation methods may all have a significant effect 
on exosome composition and/or production. As a result, these vari-
ables may affect the characteristics of exosomes and modify the 
cells' in vitro productivity. Below is an overview of the methods by 
which alterations to culture conditions may impact exosome secre-
tion and content.

6.1  |  Soluble factors

Adding specific soluble cytokines to the culture medium is a sim-
ple technique to manipulate cellular exosome secretion. A myriad 
of bioactive cytokines, including lipopolysaccharide (LPS),210 N-
methyldopamine,211 noradrenaline,211 and adiponectin,212 have 
been examined for this purpose. The properties and therapeutic 
actions of exosomes may undergo dramatic changes under these 
conditions. Furthermore, each of these soluble factors may have 
profound effects on the secretion of exosomes and their associated 
cargo depending on cell type. Therefore, much research is needed in 
this space to further evaluate how to produce the most significant 
exosomes for a particular therapeutic application. Notably, however, 
certain soluble factors have shown the ability to influence exosome 
secretion by various cell types. Limitations, such as the possibilities 
of a change in physiological condition or internalization of the agents 
by the parent cells, mean that there is still a long way to go before 
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    |  239MIRON and ZHANG

their usage is widespread.213,214 Furthermore, adding additional 
by-products and factors poses more regulatory and governmental 
regulation. Hence, researchers have been reluctant to add soluble 
factors for large-scale exosome production for clearance purposes 
by the FDA and CE.

6.2  |  Chemical/physical stimulation

Cells undergo phenotypic alterations in response to environmen-
tal cues. Thus, various in vitro methods have been formulated to 
modify and alter cells by various chemical and physical stimulation 
methods to alter their secretion of exosomes. Stem cells, which 

operate as tissue producers, have been demonstrated to respond 
to signals of tissue injury by becoming activated. Researchers have 
used this theory to justify their efforts to chemically or physically 
mimic a damaged microenvironment during stem cell development 
to boost exosome synthesis and thus increase their therapeutic ef-
ficacy.215,216 For instance, chemical stimulation such as hypoxia may 
affect exosome secretion.217-219 Serum deprivation is another means 
to stimulate the secretion of more regenerative exosomes.220,221

In addition, bioreactor experiments and radiation have demon-
strated that mechanical stresses, including flow and stretching vari-
ables, may affect exosome secretion, leading to a 37-fold increase 
in EV production.222,223 Ultrasound is another way to increase exo-
some secretion by 8- to 10-fold.224

TA B L E  2  Examples for recent studies for application of MSC-derived exosomes of various sources in management of multiple diseases.

Sources Therapeutic mechanism

Adipose-derived MSCs 
exosomes

•	 Suppression of neuronal apoptosis and reduces ß-amyloid pathology of Alzheimer's disease (Kamal et al. 2020)185

•	 In osteoarthritis: ADMSC-exosomes possess antisenescence effects via downregulation of inflammation and 
oxidative stress (Tofiño-Vian et al., 2017)186

•	 Protection against acute kidney injury through targeting SIRT-1 pathway (Gao et al., 2020)187

•	 Promotion of epidermal barrier repair by induction of ceramides synthesis in atopic dermatitis (Shin et al., 2020)188

•	 Protection against ischemic brain injury by downregulating miR-21-3p and upregulating MAT2B signaling 
transduction. (Li et al., 2019)189

•	 Attenuation of cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 and promoting polarization 
of macrophage M2 (Deng et al., 2019)190

Bone marrow MSCs 
exosomes

•	 Promoting osteoblast proliferation via MAPK pathway in osteoporosis (Zhao et al., 2018)191

•	 Restoring oxygenation, suppression of cytokine storm, and reconstitution of immunity in severe COVID-19 patients 
(Sengupta et al., 2020)192

•	 Stimulation of cutaneous wound healing through TGF- ß /Smad signaling pathway (Jiang et al., 2020)193

•	 Promotion of bone regeneration by enhancing angiogenesis (Takeuchi et al., 2019)194

•	 Protection against myocardial infarction by promoting autophagy (Zou et al., 2019)112

•	 Regeneration of pancreatic beta cells and restoration of insulin in type 1 DM rats (Sabry et al., 2020b) and 
neurorestorative effects in type 2 DM rats (Venkat et al., 2020)195

•	 Improve cognitive impairment, attenuate neurons and astrocytes degeneration, and reduce synaptic loss in diabetic 
animals (Nakano et al., 2016)196

Human embryo MSCs 
exosomes

•	 Promotion of osteochondral regeneration and cartilage repair (Zhang et al., 2016)197

•	 Alleviation of osteoarthritis by maintaining the normal balance of synthesis and degradation of cartilage extracellular 
matrix (Wang et al., 2017)198

Human endometrium 
MSCs exosomes

•	 Enhance cardioprotection in myocardial infarction (Wang et al., 2017)199

Umbilical cord •	 Suppression of epithelial-mesenchymal transition of hepatocellular carcinoma cells (Xu et al., 2020)200

MSCs exosomes •	 Tumor inhibition in bladder cancer via delivery of miR-139-5p (Jia et al., 2021)201

•	 Repair the heart after myocardial infarction via delivery of circular RNA 0001273 (Li et al., 2020)202

•	 Protection against renal interstitial fibrosis via modulating ROS-mediated P38MAPK/ERK signaling pathway 
(Liu et al., 2020)203

•	 Improvement of neurologic function and promoting angiogenesis in spinal cord injury (Zhang et al., 2020)204

•	 Inhibition of inflammation and fibrosis and prevention of development of diabetic nephropathy (Xiang et al., 2020)205

•	 Increase the sensitivity of ovarian cancer cells to chemotherapy (Qiu et al., 2020)206

•	 Traverse the blood–brain barrier, induce autophagy reduce neuronal loss and apoptosis, and increase striatal 
dopamine repairing Parkinson's disease model (Chen et al., 2020)207

•	 Alleviation of acute liver injury through delivery miR-455-3p (Shao et al., 2020)124

•	 Promote the recovery of hepatic oxidant injury through the delivery of glutathione peroxidase 1 (GPX1) 
(Yan et al., 2017)208

•	 Decreasing TLR4 expression, NF-KB/p65 activation and regulate inflammatory factors expression severe 
burn-induced inflammation in rats via delivery of miR-181c (Li et al., 2016)209

Abbreviations: DM, diabetes mellitus; MSC, mesenchymal stem cell; ROS, reactive oxygen species.
Source: Adapted from Alzhrani et al.184
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7  |  ISOL ATION TECHNIQUES

Exosome processing and separation are dependent on a number of fac-
tors, including the initial sample composition. Thus, not only do research-
ers need to harvest all exosome samples, but much more importantly, 
the exosomes to be harvested need to be harvested from the correct 
cell type under the right conditions described above. To ensure long-
term viability and high yields, it is crucial to understand the principles 
upon which the separation process is based, as well as how these as-
pects impact the quality and features of the products. Exosomes of high 
purity and yield that are valuable for facilitating life science research and 
diagnostic and therapeutic applications are the end goal of processing.

Notably, exosomes can be isolated from milk, CSF, saliva, urine, 
serum, plasma, and cell culture media,225 and each type requires 
potentially different processing approaches. Exosomes, plasma 
proteins, microvesicles, apoptotic bodies, and cell debris are all 
components of plasma, a complex biological fluid with many com-
ponents, whose sizes and biochemical characteristics overlap.226 
Due to the lower exosome concentration227 in urine compared to 
blood and plasma, more urine is needed to obtain the same yield of 
exosomes. Exosome mass manufacturing often uses culture medium 
acquired after cell culture since it is easy, inexpensive, and does not 
need animal or human subjects to be used.228 The exosome yield 
from cell culture medium may be greater than that from plasma or 
serum.229,230 Exosome research and development might benefit 
from a comprehensive study comparing exosome isolation tech-
niques across various sample types.

8  |  E XOSOME ISOL ATION TECHNIQUES

The six most prevalent methods for preparing exosomes are out-
lined in Table 3 below. These methods include size-exclusion chro-
matography, immunoaffinity capture, precipitation, ultrafiltration, 
and ultracentrifugation. These techniques produce exosomes with 
varying degrees of purity and yield, and they are often employed in 
tandem with one another. The physical and chemical foundations of 
exosome isolation, as well as their methods and commercial applica-
tions, are discussed for each method.

8.1  |  Ultracentrifugation

The most popular and commonly used method for separating ex-
osomes is ultracentrifugation due to its low price and high efficiency 
(Figure 4). Because of their different densities, cell debris, apoptotic 
bodies, and other large components in the culture media may be iso-
lated using this method.231,232 While high g-forces (100 000 g) have 
been proven to cause some degree of disruption including EV ag-
gregation, ultracentrifugation in general has a decent recovery rates 
compared with other approaches.233,234

Nevertheless, ultracentrifugation is the most highly utilized 
process (80% of all studies)235 and is currently considered the gold 

standard in the industry.17 Because of size and density differences, 
centrifugation at low and high g-forces, as well as additional time, are 
needed to effectively separate exosomes from other components. At 
first, the speed at which cells are separated from the cell culture me-
dium is rather slow (300 g). To remove large cell debris and fragmented 
organelles, the supernatant is centrifuged at a higher speed (10 000–
20 000 g). Finally, an even higher speed centrifugation, typically 
between 100 000 and 150 000 g, is used to separate the exosome-
containing pellet from the supernatant. Exosome extraction from 
urine, saliva, cell culture, plasma, and serum are only some of the many 
applications of this method.236,237 Exosome isolation typically em-
ploys ultracentrifugation rates between 100 000 and 210 000 g.238,239 
Separation may be enhanced by increasing the speed, but the down-
side is that this may run the risk of damaging the exosomes.240

8.2  |  Size-exclusion chromatography

The second most common method by which to isolate exosomes is 
size-exclusion chromatography (SEC). Sizewise, exosomes are on the 
order of tens of nanometers, making them much larger than typical 
proteins. Columns of porous beads are used to transport liquids. Pol-
ymeric beads have pores of varying sizes, allowing molecules with 
varying radii to pass through them; molecules with smaller radii are 
forced to move along the column's tunnels and, as a result, elute at a 
later time. Some molecules, including exosomes, have hydrodynamic 
radii that are too large to fit through the column's pores and instead 
move quickly through the medium.241 As a result, there is less of a 
need for complex equipment, and sample preparation is straightfor-
ward. All sample molecules are then separated in a porous station-
ary phase whose pore size is determined by the dimensions of the 
sample.241 Acoustic fluid separation is a different technique that is 
reliant on SEC. Here, they are exposed to various acoustic stresses 
dependent on particle size and may be separated as a result.242 One 
of the advantages of SEC is the minimal alterations to the exosome 
characteristics compared to precipitation-based and ultracentrifu-
gation methods. Therefore, SEC is a very efficient and effective 
method for isolating exosomes that maintains the biological activity 
and integrity of the vesicles.243

To facilitate exosome isolation by SEC, commercially available 
prepacked columns are available, such as qEV (Izon Science)244 and 
HiLoad Superdex (GE Healthcare).235 When comparing SEC per-
formed with prepacked columns to EV isolation using precipitation, 
it was found that SEC yields a lower exosome recovery rate and a 
more diverse EV population. However, the method may be per-
formed with a freestanding pump and is quick, easy, repeatable, and 
adaptable to a wide variety of sample types.

8.3  |  Ultrafiltration

Ultrafiltration refers the process of isolating exosomes based on size 
and is characterized by the utilization of very small holes (≈100 nm 
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diameter).245,246 Ultrafiltration processes have a high-throughput 
since a single filtration cycle takes just seconds to 30 min. Ultrafiltra-
tion is a method of isolating vesicles by forcing sample fluid through 
a membrane with holes smaller than 100 nm.32 Additional processes 
using membranes with smaller or larger pore sizes may be utilized to 
filter out even more impurities. The shear stress caused by the ap-
plied pressure is the technique's greatest drawback, as it might cause 
the exosomes to become damaged or lost as a consequence of mem-
brane adherence and membrane obstruction caused by the buildup 
of particles.32 Tangential, centrifugal, tandem, and sequential flow 
filtration are examples of exosome ultrafiltration techniques.32,247

8.4  |  Polymer-mediated precipitation

The hydrophilic polymer polyethylene glycol (PEG) is used in polymer-
mediated precipitation to isolate viruses from biomacromolecules. 
More than fifty years have passed since the method's inception.248 
The polymer traps water molecules, decreasing exosome solubility 
and allowing them to settle under low-speed centrifugation. To pre-
cipitate exosomes, exosome-containing samples are treated with a 
PEG (Mol. Wt.: 8000 Da) solution. This precipitate might be sepa-
rated and reprocessed by centrifugation or filtering after incuba-
tion at 4°C overnight. There are a number of commercially available 
exosome isolation kits, including PureExo®, ExoQuick®, Exo-spin®, 
and miRCURY®. These kits induce exosome precipitation using pol-
ymeric additives (for use with specific reagents) and allow for sepa-
ration to occur in 30 min using a traditional centrifuge (10 000 g).

8.5  |  Precipitation

Exosome characterization often employs precipitation techniques. In 
studies conducted all across the globe, precipitation was found to be 
the method of choice for analyzing EV RNA.249 Polymers that have 

a high molecular weight but low water solubility are used in precipi-
tation techniques to bind water molecules and precipitate insoluble 
substances.248 Biological components are concentrated until their 
solubility is surpassed, at which point they precipitate out of solution. 
The lower product purity obtained with this method means that this 
approach has restricted therapeutic utility in trials, despite its higher 
yield.250

8.6  |  Immunoaffinity-based capture

Isolating exosomes from bodily fluids has been made possible by 
Immunoaffinity-based capture (IAC), which makes use of the bind-
ing affinity of proteins to protein receptors found in the membranes 
of exosomes and vice versa. Using exosome indicators such as Tim-4 
binding to phosphatidylserine, CD326, and CD63, ELISA is a typical 
approach that uses IAC to collect and quantify exosomes.232 IAC may 
also be used to further refine the purity of exosomes separated by 
density- and size-based methods. Isolating tumor-specific exosomes is 
a time-consuming process due to their low abundance. It was proven 
that by using mAb 763.74, which is specific for the CSPG4 epitope 
produced by certain cells, the IAC-based technique could separate and 
extract melanoma-specific exosomes. This technique was shown to be 
effective for liquid biopsy, with a capture rate of approximately 95% 
for exosomes that are unique to melanomas.251 However, this method 
is useless because although it is efficient, it is not practical for thera-
peutic purposes, as many biological materials are added/incorporated 
during the exosome isolation process. Therefore, IAC methods are 
typically utilized for diagnostic purposes.252

8.7  |  Microfluidics-based technologies

Exosome isolation and detection may be performed quickly and ef-
ficiently using microfluidics. Exosome separation techniques use 

F I G U R E  4  Exosome isolation using differential ultracentrifugation. The concept of differential centrifugation is as follows. First, matter 
with different weights is separated from the sample over time based on density. First, slow centrifugation (500× g) is utilized to pellet cells 
for 15 min. The supernatant is then collected and transferred to a new tube and centrifuged at 2000× g for 20 min to pellet apoptotic bodies. 
Thereafter, the supernatant is collected and centrifuged at 10 000× g for 30 min to pellet the exosomes. Finally, the supernatant is collected 
and centrifuged at 100 000× g for 1 h. Exosomes are then collected from the remaining pellet.
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microfilters, nanoarrays, and nanowires, all of which are small enough 
to isolate exosomes. First, silicone nanowires are carved on the sides 
of micropillars to serve as traps for liposomes. The second technique 
involves utilizing microbeads to perform acoustic nanofiltration, 
which isolates exosomes with a size in the range of 100–1000 nm. 
Particles of varying sizes may be separated using viscoelastic micro-
fluidics, in which a viscoelastic medium, such as poly(oxyethylene) 
(PEO), is subject to elastic lift forces. This method has the poten-
tial to achieve separation efficiencies of 80% and purities of 90%.253 
This method is preferred for exosomes diagnostics versus isolation 
for therapeutic use.
Other techniques exist, including dielectrophoretic segregation 
(DEP) and tangential flow filtration (TFF), although these methods 
are much less frequently utilized.

9  |  QUANTIFIC ATION OF E XOSOMES

9.1  |  Methods of quantification

Due to their diminutive size, conventional molecular biology meas-
urement techniques are unreliable when used with exosomes. 
Improved technology and instruments have led to a variety of ap-
proaches being used for their quantification at present. Current 
quantification techniques, their underlying concepts, and their ben-
efits and drawbacks are summarized in Figure 5 and Table 4 and dis-
cussed below.

9.2  |  Nanoparticle tracking analysis

Using the variations in the light scattered by suspended particles 
owing to their Brownian motion, the particle concentration may be 
determined using Nanoparticle tracking analysis (NTA), which has 
been utilized for the measurement of exosomes.254,255 Particles in 
suspension in a sample chamber are illuminated by a laser beam, and 
a video of the particles in Brownian motion and scattered light is 
captured by a light-sensitive CCD camera placed atop a long working 
distance microscope.

The Stokes–Einstein equation is then used by an external pro-
gram to analyze the video, isolate the individual particles, and deter-
mine their hydrodynamic radii. The sample's particle concentration 
may then be calculated by counting all of the particles inside the 
camera's field of vision, with the result expressed in terms of parti-
cles per cubic centimeter. Since NTA does not alter the material in 
any way and may be used to identify and quantify exosomes, it is 
the technique of choice for this purpose. Other EVs in solution will 
not be identified when using fluorescent mode, which is designed to 
detect only fluorescently labeled exosomes.256 The instrument's size 
restriction of 30-500 nm means that the concentration of EVs larger 
than 500 nm will be underestimated.257

Reproducible findings need both the utilization of expensive in-
strumentation and an expert understanding of software and hard-
ware configurations. In addition, it is possible that photobleaching 
and background signals from dye aggregates can muddy the findings. 
When gauging EVs, NTA is often used. Lipoproteins of comparable 

F I G U R E  5  Methods for exosome characterization. Reprinted with permission from Modani et al.338
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244  |    MIRON and ZHANG

sizes, however, may skew the findings of EV measurements. Users 
are encouraged to analyze the data correctly and rigorously adhere 
to established guidelines.258

9.3  |  Flow cytometry

Many laboratories and institutions have access to a flow cytometer, 
making it the instrument of choice for analyzing exosomes. This is 
because flow cytometers can analyze many parameters simulta-
neously. Due to size detection restrictions, traditional cytometers 
may fail to pick up particles smaller than 300 nm. Particle resolution 
might be improved with the use of multiangled lasers if the latest 
generation of flow cytometers are updated.259

Apoptotic bodies and microvesicles may both be detected by 
flow cytometry since this technique can routinely and relatively 
simply count particles larger than 500 nm.260 Although exosomes 

are too small to be detected by a flow cytometer on their own, 
they may be identified when they are bound to antibodies against 
antigens on the exosome membrane. After being attached to sec-
ondary fluorophore-conjugated antibodies, the counting beads are 
suspended in fluid and sent through the center of a detection cell as 
a single particle stream under the guidance of the sheath fluid. An 
incident laser beam excites the fluorophores bound to the beads, 
causing them to fluoresce and emit longer wavelength light. The 
fluorescence detector then detects the fluorescence intensity and 
counts the number of emission “events” to determine the concentra-
tion of beads and, by extension, exosomes in the sample.261 Particle-
scattered light will also be detected and quantified, as signals from 
forward scatter will be picked up by a detector placed in front of 
the laser beam, while those from side scatter will be picked up by 
a detector placed on the side of the beam. The warm effect is one 
of the major obstacles in exosome quantification using flow cytom-
etry. When a cluster of very small vesicles is recorded as a single 

TA B L E  4  Methods of exosome quantification.

Method Principle Advantages Disadvantages

Nanoparticle tracking 
analysis (NTA)

Based on the detection of light scatter 
by particles in suspension and their 
Brownian motion to estimate the 
number and volume distribution of 
EVs

Does not rely on 
detection of a 
specific marker

Direct quantification

Expensive instrument
Photobleaching and potential background 

from dye aggregates
Measures non-exosomal contaminants also

Flow cytometry Flow cytometry detects particles 
suspended in a fluid by their 
interaction with a laser beam as they 
flow through a detection cell

Direct quantification Insensitivity to smaller exosomes. Requires 
binding to fluorophore-conjugated 
antibody-coated beads

Swarm effect that means multiple smaller 
vesicles are counted as single particle. 
This may provide false positive result

Tunable resistive 
pulse sensing

Detects the passage of individual 
particles through a pore in a 
membrane

Direct quantification Pore clogging. Insensitivity to smaller 
exosomes. Measures non-exosomal 
contaminants also

Electron microscopy Imaging of individual exosomes under 
scanning electron microscope

Exosomes are manually 
counted

Labor-intensive, slow process

Dynamic light 
scattering

Evaluates fluctuations in the light 
scattering intensity of particles

High sensitivity, simple 
sample preparation, 
rapid

Heterogeneous exosome populations cannot 
be analyzed, difficulty with polydisperse 
samples

Microfluidics- based 
detection

Transport of fluids controlled by capillary 
forces

Product purity, high-
throughput analysis

Not ready for industrialization yet, increase in 
the signal/noise ratio is encountered

Surface plasmon 
resonance (SPR)

A light is focused to a metal film 
through a prism and the reflected 
light is detected which is collective 
oscillation of free electrons. It is 
sensitive to change in refractive index 
of the media

Label-free and real-time 
quantitative analysis 
technique

High sensitivity of up 
to l nM for a 20 kDa 
protein

Specific to the binding 
event

Difficult to discriminate between specific and 
non-specific interactions

Mass sensitive limitation
Limited sensor area
Expensive instrument and sensor cost

Single particle 
interferometric 
reflectance 
imaging sensor 
(SP-IRIS)

A monochromatic light illuminates on 
sensor surface and scattering signal 
from individual nanovesicles is 
detected by CMOS camera

The signal is enhanced due to the 
interferometric phenomena

Quantitative, label-
free, and dynamic 
detection method

Multiplexed phenotyping 
and digital counting 
of individual EVs with 
diameters of 50–200 
nm

Detection limit of 3.94E+09 particles/mL
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event, misleading conclusions might be drawn. This happens when 
the scattering or fluorescence signal exceeds the detection limit be-
cause of a large concentration of very small vesicles in the sample.262

9.4  |  Tunable resistive pulse sensing

Tunable resistive pulse sensing (TRPS) uses voltage delivered across 
a membrane's pores to identify specific particles.263 The pore 
size may be adjusted to accommodate a wide range of sample di-
mensions. When a sample of exosomes is placed at one end of a 
membrane and a single exosome is pushed through the pore, the in-
creased resistance within the pore causes the current going through 
the pore to decrease. The quantity and size of particles passing 
through the pore may be determined by monitoring and analyzing 
the variations in the current. An “event” is defined as a reduction 
in the current of one microampere, and the number of events is 
proportional to the exosome concentration in the sample.263 This 
technology has certain drawbacks, such as the possibility of pore 
clogging with repeated usage of the membrane and the insensitivity 
of the equipment, which does not detect very small exosomes.264 
Owing to the requirement for more specialized equipment, it is not 
a commonly employed technique in the field of exosome detection 
and quantification.

9.5  |  Electron microscopy

The most popular technique for verifying the purity of isolated 
exosomes and ensuring that the vesicles are not damaged is elec-
tron microscopy. The imaging and morphological display method 
known as whole-mount negative staining is often employed for 
exosomes. However, cryo-TEM imaging has shown that exosomes 
are entirely spherical, and the cup form is a byproduct of the dry-
ing process necessary to prepare the specimen for imaging. Exo-
some morphology may be preserved with blocking sectioning, 
plastic embedding, and fixation with glutaraldehyde, which may 
be chosen for observing the native structure of extracellular vesi-
cles.265,266 Electron microscopy is still helpful for verifying the ex-
osome isolate's shape and purity, but it is too time-consuming and 
has too low throughput to be used for accurate counting. Due to 
vesicle loss during sample preparation, electron microscopy is also 
likely to underestimate the true number of exosomes present.267 
Nevertheless, its use has been widely employed for exosome char-
acterization and quality assessments following isolation and less 
utilized for quantification.

9.6  |  Dynamic light scattering

Dynamic light scattering (DLS) is a widely used method for quan-
tifying nanoparticle size. Particles in a solution undergo Brownian 
motion, which causes them to move randomly and collide with one 

another, exchanging energy in the process. Smaller particles are 
more affected by the energy transfer since they go through the sol-
vent at a greater velocity. Particles in solution will disperse a beam 
of incoming light in all directions.268 Particle size and concentration 
in a solution may be determined by monitoring the intensity in the 
variations in scattered light over time at a certain angle using a fast 
photon detector to learn more about the particles’ motion. The in-
tensity of the dispersed light will be more volatile over time when 
smaller, faster-moving particles are involved. The particle diffusion 
coefficient (D) and intensity correlation function (R) are examined 
to learn more about the fluctuations. The size of the particles in 
the solution may be calculated using the Stokes–Einstein equation, 
which establishes a relationship between particle density ('D') and 
particle radius ('R'). If the polydispersity of the solution is less than 
0.1, all of the particles in the sample are the same size, which may 
be determined using DLS.269 The time-dependent variations in the 
amount of light dispersed by the moving particles are measured 
and recorded. Although DLS is a versatile tool for quantifying ex-
osomes, it is seldom used in practice.

9.7  |  Microfluidics

In microfluidics, micron-sized channels are utilized to manage 
fluid volumes on the order of microliters to milliliters. Exosomes 
in cell culture media or a patient sample may be immunocaptured, 
quantified, and characterized using a microfluidic device. Mi-
crofluidic devices were employed by Fang et al. to detect TEM-
characterized exosomes. Using a programmed pump system, the 
immune-captured exosomes were measured by determining their 
capture efficiency, which remained constant on chip.270 This 
method of quantification is practical due to its minimal sample 
size requirements, low cost, and straightforward procedures.271 
This method's great sensitivity indicated that miRNA might be 
analyzed and quantified for use in clinical care and biological 
research.272

9.8  |  Surface plasmon resonance

Much research has been conducted on Surface plasmon resonance 
(SPR) and its uses in the last decade. Resonant electron oscilla-
tions caused by a refractive index mismatch between a material's 
surface and incoming light are used for SPR, a label-free detection 
method.273,274 SPR has been shown to be a solid method for inves-
tigating biomolecular interactions. In addition, SPR may be used to 
identify and quantify exosomes. For instance, an SPR sensor probed 
with anti-CD63 antibodies was used to measure the concentration 
of exosomes containing the tetraspanin membrane protein CD63 
by converting the SPR response into a surface-bound mass. It was 
found that the margin of error for the measurements was approxi-
mately ±50%.275 Nevertheless, other methods have proven to be 
simpler with better detection abilities.
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9.9  |  Single-particle interferometric reflectance 
imaging sensor

Multiplex phenotyping and digital counting of distinct populations 
of exosomes larger than 50 nm utilizing microarray-based solid-
phase chips is possible with the Single-particle interferometric re-
flectance imaging sensor (SP-IRIS) technique. After bouncing off the 
SiO2 layer, the IRIS signal is affected by interference from the fields. 
IRIS is dual-modal in that it can both measure biomass with high-
throughput and digitally identify single particles at high magnifica-
tion without the need for labels.276 There are a variety of methods 
for analysis and characterization, although some of them may lack 
sensitivity due to the small size of exosomes.

10  |  E XOSOME CHAR A​C TE​RIZ ​ATION

The quantity and purity of biomolecules, including nucleic acids, li-
pids, and proteins, may be evaluated together with the overall qual-
ity of the isolated exosomes using quantitative characterization 
techniques.277,278 Several parameters are important, as discussed 
below.

10.1  |  Total exosome count

Methods that count particles are used to calculate exosome yield,279 
including electron microscopy (EM), resistive pulse sensing (RPS), dy-
namic light scattering (DLS), fluorescence correlation spectroscopy 
(FCS), flow cytometry, and nanoparticle tracking analysis.256,280–282 
FCS, flow cytometry, and NTA are the most commonly used meth-
ods. DLS and RPS tend to overstate the overall number of particles, 
making them unreliable for counting.279

10.2  |  Protein content

Exosome purity may be evaluated, in part, by determining the 
amount of protein they contain (in terms of mass). The purity of a 
sample may be calculated as the percentage of protein mass rela-
tive to the total number of exosome particles.279 Protein markers 
are identified and quantified with the use of enzyme-linked immu-
nosorbent assays (ELISAs) and mass spectrometry.

The mass-to-charge ratio of ions is detected in mass spec-
trometry, a high-throughput method for compound detection. To 
prevent exosome degradation during analysis, mass spectrom-
etry methods employed in exosome proteomics283 need only 
little sample pretreatment.284 Exosome-specific proteins may 
be systematically characterized using mass spectrometry and 
bioinformatics.285

ELISA is a standard method for quantitatively analyzing proteins 
and peptides via the use of antibodies.283 The detection of protein 

markers and the quantification of tumor antigens on exosomes and 
exosome-specific antigens are possible thanks to ELISA, which has 
been employed for exosome profiling and diagnosis.259 Some pro-
tein indicators may be inexpensively analyzed using ELISA, while 
protein quantification in complicated biological samples can be ac-
complished with mass spectrometry.286

10.3  |  Lipid composition

Exosomes may be categorized into several classes based on the lipids 
they transport in their membranes. Targeted exosome purity may be 
measured by calculating the percentage of total exosomes that con-
tain a target lipid.279 Lipid quantification methods include Fourier 
transform infrared (FT-IR) spectroscopy, fluorescence microscopy, 
and sulfo-phospho-vanillin (SPV) assays.287,288 Lipid concentra-
tions are determined by SPV assays, in which a colorful product is 
formed from the reaction between phosphovanillin and the carbo-
nium ions obtained from lipids in the presence of sulfuric acid.288,289 
For reliable findings, sample concentrations over 50 μg mL1 lipid are 
needed.289 Lipids in exosomes can be quantified using fluorescence 
microscopy in combination with a lipophilic dye for plasma mem-
branes, such as PKH26 or DiR, and comparison of exosome images 
to reference standards.290–292 Compared with SPV and fluorescence 
microscopy, FT-IR gives lipid counts with greater precision, consist-
ency, and speed with a lower cost and sample volume.289,292 How-
ever, FT-IR is insensitive to cholesterol and other sterols because 
their C-C and C-H vibrational bands are easily confused with those 
of other compounds.289

10.4  |  DNA/RNA analysis

DNA and RNA may be transported between cells through exosomes. 
Exosome purity may also be evaluated by calculating the ratio of tar-
geted DNA/RNA sequences to the total amount of exosomes. Mi-
croarrays, next-generation sequencing (NGS), and polymerase chain 
reaction are only a few of the common nucleic acid quantification 
methods that may be used for exosome DNA/RNA research.293–296 
When compared to NGS and microarray technologies, PCR is con-
sidered the gold standard because of its superior sensitivity and 
accuracy.297

11  |  DISCUSSION

This first article in this two-part series was designed to promote a 
better understanding of exosomes, including their sourcing, isola-
tion techniques, quantification, and characterization. Exosomes 
offer many advantages as regenerative biomolecules, and their ther-
apeutic potential is discussed in the subsequent article. Below, we 
highlight some relevant discussion points.
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11.1  |  Advantages of exosomes over 
cell-based therapies

One area that has gained much research interest the compari-
son of exosome therapy to cell-based therapies such as stem cell 
therapy. Exosomes offer many advantages in this regard with 3 
of their main advantages being 1) exosomes will never initiate 
immune refusal, which has been one of the main limitations of 
stem cells, 2) exosomes have superior suitability for storage and 
ease of use, and 3) exosomes are small enough to cross over many 
small barriers, such as the blood–brain barriers, whereas cells are 
not.

Stem cell-derived exosomes, for instance, offer the possibility 
to promote cell differentiation and angiogenesis and improve cell 
survival/activity. In addition, exosomes may quickly foster better 
microenvironments by dampening inflammatory reactions. Cell-
dependent treatments have been criticized for their slow response 
time, which is especially problematic for those who need immediate 
medical attention, such as those suffering from myocardial infarc-
tion. For instance, when injecting stem cells intravenously, many 
MSCs enter into circulation, which can very well lead to entrapment 
within the lungs. However, exosomes, because of their small size, 
are able to bypass the lung and enter the bloodstream where they 
may more precisely reach their intended target tissues. Encourag-
ingly, the inner exosomal composition may be greatly modified by 
cell sourcing, laboratory setting, mechanical stimulation, etc. Thus, 
many possibilities exist.

Researchers and authors have recently revealed that 
exosome-based treatments are more promising than stem 
cell-based therapies because of their more well-defined pro-
cesses.298 The bilayer architectures and chemokine, cytokine, 
microRNA, mRNA, and immunomodulatory substance compo-
nents endow stem cell-derived exosomes with excellent phar-
macokinetic properties, biocompatibility, and tissue-targeting 
capacity.221,299–301 In addition, several studies have shown that 
exosomes can lower inflammation, control cell proliferation, and 
speed up the recovery of injured tissues.300,302 Exosomes have 
been shown to improve the skin,303 muscle and bone,304–306 
nerve,307 heart,308 liver,309 kidney,310 lung,311 immune system,312 
and virus infection.313 Moreover, the ability of exosomes to be 
utilized for both the detection and resolution of tumorigenicity 
and immune rejection associated with cell therapy, along with 
the convenience and ease of obtaining exosomes without the 
complexities of cell isolation and potential damage, have further 
expanded the design and clinical application of exosome-based 
therapies.299,314

In summary, the therapeutic potential of MSC-derived exosomes 
favoring tissue repair and their clinical use may offer significant ad-
vantages over their live cell counterparts. This is because they may 
produce fewer unwanted side effects, such as infusional toxicity, 
uncontrolled cell growth, and the possibility of tumor formation, all 
of which have been debated for over 20 years with stem cell-based 
therapies. Exosomes cannot change or copy themselves, and they 

cannot spread. They have been tested in various animal models for 
various human diseases (e.g., hypoxic pulmonary hypertension,315 
acute kidney injury,316 and liver fibrosis122), where it was determined 
that their functions are either equivalent to or better than those of 
MSCs, all while being much safer.

Previously, it was reported that exosomes are preferred over cell 
therapy for five reasons. 

1.	 These vesicles can be kept for a long time without losing their 
ability to boost the defense system.

2.	 Exosomes can better integrate with the target cell than soluble 
factors made by cells because their surfaces look like those of 
body cells.317

3.	 Since they are much smaller than cells, exosomes may travel 
freely across capillaries and various barriers such as the blood–
brain barrier.318

4.	 Exosomes can be readily manipulated and engineered.319

5.	 Injection of exosomes is easier than that of cell therapy (and there 
is the possibility of nasal administration).319

11.2  |  Drug delivery

The blood–brain barrier and the matrix of highly structured tu-
mors are two examples of biological barriers that are notoriously 
difficult for therapeutics to penetrate. However, exosomes may 
offer a natural platform for improved targeting and functional 
transfer of therapeutics across these barriers. As a result, there 
is much enthusiasm about using exosomes for cutting-edge drug 
delivery methods to treat a wide variety of complex diseases. To 
date, incubating parent cells with desired molecular cargo has al-
lowed for the passive loading of specialized cargo.320 While this 
line of research remains in its infancy, it may present superior ways 
to deliver therapeutic drugs to target tissues while avoiding im-
mune clearance.321

11.3  |  Cellular origin and exosome isolation

The cellular origin of exosomes is a key component in determin-
ing their biodistribution and composition. Exosomes from differ-
ent cellular sources may carry dramatically different cargo,322 and 
subsequent studies have shown that there is great variability in 
therapeutic outcomes. Therefore, much like one growth factor 
cannot fulfill the roles and requirements to regenerate all tissues, 
no single exosome or exosome source can fulfill the roles to re-
generate all tissue types. Therefore, additional research needs to 
specifically address which exosome, which cell source, and which 
culture conditions or isolation technique are most effective for 
the therapeutic application of exosomes for the treatment of 
various individual diseases. This will lead to more favorable per-
sonalized medicine once a better understanding of exosomes is 
accumulated.
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11.4  |  Characterization and standardization 
for the future

One of the downfalls in the advancement of exosome research has 
been the rather poor reproducibility and lack of proper documenta-
tion during various research endeavors. To improve reproducibility, 
critical interpretation, and transparency, it is strongly advised that 
all authors publishing in this field follow the most up-to-date MISEV 
guidelines and provide full disclosure on the methods used for par-
ticle isolation and quantification.323 Greater cooperation within the 
EV community is needed to produce a set of standard resources 
and guidelines in light of the lack of uniformity in EV loading studies 
and the high degree of diversity in methods utilized across the lit-
erature.323 The International Society for Extracellular Vesicles (ISEV) 
was founded in 2011 with the goal of encouraging standards in this 
area. In 2014, the first position statement on the minimum informa-
tion for studies of extracellular vesicles (MISEV) was issued.324

11.5  |  Optimization for storage

Another commonly asked question is how to store exosomes for 
maximum potency. The International Society for Extracellular Vesi-
cles recommends storing exosomes in phosphate-buffered saline at 
-80°C.231 Storage at temperatures over -80°C reduces the number 
and content of exosomes, whereas storage at lower temperatures 
has less of an effect.325,326 It has also been demonstrated that ex-
osomes can be better preserved from cryodamage when trehalose 
and certain preservative agents, such as DMSO and sucrose, are 
added.327 Research is ongoing as to whether lyophilization is pos-
sible in the future.

11.6  |  Challenges with bringing exosomes into 
everyday clinical practice

There is substantial scientific evidence regarding the therapeutic ef-
ficacy of exosomes for a variety of treatments of various human dis-
orders. Their success, however, resides in their production rather than 
their application in medicine. To create therapeutic exosomes accept-
able for clinical use, it is necessary to improve CMC (chemical, manu-
facturing, and control) development for good manufacturing practices 
(GMP). Creating a master cell bank (MCB), developing a methodology 
for large-scale exosome synthesis/isolation, and creating quality con-
trol (QC)/analytical methods for therapeutic exosome manufacturing 
are all part of CMC development for exosome therapies.328–331 Be-
cause exosomes are such a new therapeutic platform, no one has yet 
devised a universally accepted procedure for their CMC.

To produce exosomes on either a small or large-scale, various 
cell types have been cultured in fixed or moving culture systems 
such as flasks and bioreactors.332–335 Thus, a robust and efficient 
isolation and purification process is crucial to obtain a high yield of 
pure exosomes.336 Since many research reports have demonstrated 

variability in various isolation techniques and differences in exo-
some isolation, there remains a significant need for technical im-
provements. This, along with the high costs of commercialization 
and the lack of insurance coverage and government bodies regu-
lating exosomes with FDA/CE clearance, has drastically slowed the 
rate toward widespread commercialization.
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